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Abstract

Volatility is still the most mysterious component of Option Pricing Theory.
The Black Scholes Option Pricing Model is the one foundation stone of Option pricing
theory, but it has only one unknown parameter i.e. Implied Volatility. This paper tries
to make a comparative analysis of the seven closed-form approximations of Implied
Volatility in Indian options market. The study tries to capture the relative accuracy and
information content on different basis like time to maturity, interest rate and monevness
for one month options over a long term of twelve years i.e. from June 2001 to Dec.
2012.The results indicate that the Corrado and Miller approximation and the Keber and
Schuster approximation are relatively much accurate than the other approximations

being compared.
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INTRODUCTION

Volatility has a central role in Derivative Pricing Theory. The Black-Scholes
Model has volatility as the only parameter among strike price, time to expiration,
interest rate and the spot price that has to be forecasted. The underlying asset's
volatility is needed in the pricing of an option and there are options with volatility
as the underlying assets. The unknown parameter of Option Pricing through the
Black Scholes Option Pricing Model is Implied Volatility. This paper focuses on
finding the best estimate of implied volatility which can be calculated through a
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closed-form solution with the known parameters and thus can be used as a substitute
for the Black scholes implied volatility.

REVIEW OF LITERATURE

Latane and Rendleman (1976) first noted that each observable variable
has a changing impact on the resulting call premium. Their model approximates
volatility by taking implied volatilities for all options traded on a given underlying
asset and putting weights according to the partial derivative of the Black
Scholes equation with respect to each implied volatility. Beckers (1981)
investigated the predictive ability of implied volatility. They considered closing
price data of CBOE stock options for the period April 1975 to July 1977. He
considered dividend and the significance of weights in interpretation of
volatilities. Beckers concluded that the predictive power of implied volatility
was superior to the historical volatfliry in estimating cross-sectional stock
volatility. He also found that implied volatility was biased and informational
inefficient. since historical volatility provided additional information for volatility
forecasting.

Hull & White (1987) studied that when volatility is constant Black Scholes
Implied Volatility of an At-The-Money option is approximately equal to the expected
future realised volatility during the option life. Hacberle, Kahl and Curtis (1990)
computed the direct implied volatility using Curtis and Carriker approximation for
nearest to the money options of soyabean and corn futures contracts. They
analysed the data for the time period of 1986 to 1988. They estimated that
premiums using the measure of implied volatility were more accurate than premiums
estimated using the measure of historic volatility. Their results also showed that
the use of implied volatility led to more accurate predictions than the use of
historic volatility on the majority of days. Canina and Figlewski (1993) examined
the information content of implied volatility by regressing the realised volatility
on the corresponding implied volatility for the remaining life of asset. They did
not find any significant correlation between the volatilities, implied and realised,
across different maturities and moneyness. They also found a weak predictive
ability of implied volatility as compared to historical volatility in the time horizon
of greater than sixty days. Genmill (1993) compared implied volatility with an
autoregressive random variance model's volatility for At-The-Money FTSE 100
option prices and concluded that the implied volatility provided the indication for
future volatility. Lamoureux and Lastrapes (1993) investigated implied volatility
under the framework of Hull and Whites (1987) stochastic volatility option pricing
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model. They analysed the volatility forecasts with the GARCH and historical
volatility estimates for At-The-Money CBOE call options. They concluded that
implied volatility was biased but informative, and that historical volatility
contributed additional information in forecasting future stock return volatility,
Jorion (1995) examined the information content and the predictive power of im plied
volatility for foreign currency future options. He analysed that the implied volatility
was better for forecasting for the next day rather than for the remaining life of
the option. Chance (1996) estimated the approximation for the implied volatility
using a closed-form equation for Near-The-Money options. Chambers and
Nawalkha (2001) reviewed Bharadia et al. Approximation method in comparison
to the Corrado & Miller method and modified Chance method. They found that
the mean absolute errors were less accurate in case of Bharadia e al. Approximation
as compared to the modified Chance model and modified Corrado and Miller
model. Massa et al. (2007) proposed a comprehensive study of relative accuracy
for all available approximations of Black Scholes Implied Volatility. This study
used actual daily settlement prices for futures and options contracts for corn and
cotton from 1990 to 2005. The large data—set and alternative accuracy measures
to ensure reliable results. They found more accurate results with Corrado and
Miller's method followed by Bharadia e al.'s and Li's method when only call
premiums were used. As lesser work has been carried on testing the accuracy of
closed-form approximations for implied volatility in Indian market. thus we have
considered this topic for the analysis.

OBJECTIVE OF THE STUDY

The objective of the study is to make an analysis regarding the reliability
and accuracy of the proxies available for the implied volatility input for the Black
Scholes Option Pricing Model in Indian Stock Market. The study tries to find out
the best approximation for the implied volatility which can be calculated by using
the available variables,

RESEARCH METHODOLOGY

The study considers the options on S&P Nifty Index traded on NSE. The
options arc European in nature. The time frame for the study includes option
contracts till 2012 since inception i.e. June 2001,

Data Sampling
Christensen and Prabhala (1998) pointed out the problem associated with
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overlapping data which led to inappropriate results in Canina and Figlewiski
(1993) work. They suggested the use of one month contracts for better estimation.
Moving on the same lines, the sampling of data points to be considered for the
study is done on the basis of the following sampling plan :

Step 1 : Options to be considered for the study must be collected on the
working day immediately following the expiry date and this option must expire on
the next expiry date. This option has approximately a month's period to expiration.
Such method avoids overlapping data.

Step 2 : Out of the options considered in Step 1, the options which fall
in the range of St / Xt € (0.95, 1.05) where St is the index level and Xt is the exercise
price of the option. The aim is to consider the At-The-Money (ATM) options only
as they provide better estimates of the volatility and the range is considered as the
definition of ATM option.

Step 3 : Options must satisfy boundary condition i.e . ¢ > {(F * e""- ).
The observation would be included only if it satisfies the boundary condition.

The aim is to capture the most appropriate estimate of volatility. Only ATM
options have been considered because it is considered that ATM options provide
a better assessment of accurate implied volatility than In-The-Money(ITM) options
and Out-Of-The(OTM) money options.

Data

There were initially 20.785 observations in total, but after filtering the
data through the above steps. the valid observations were 13702. These
observations were considered as valid sample. The valid sample was then
considered for the further analysis.

Black Scholes Implied Volatility (BSIV)

It is the value of the volatility that is built into the market's option price.
It is referred to as a market price for the holding period of an option.
It reflects the market expectations regarding the market's future volatility.
It is based on the assumption of positive relationship between expected risk and
expected returns.
E(c)~E(r)
The Black Scholes Implied Volatility is the unique parameter for which
the Black Scholes formula recovers the price of that option.
The options price for a call is computed as per the following Black Scholes
formula :
C=S*N@)-{X*e” *Nd)}
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where :
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where

C = price of a call option

P = price of a put option

S = price of the underlying asset

X = Strike price of the option

r = rate of interest

t = time to expiration

o = volatility of the underlying

N represents a standard normal distribution with mean = 0
and standard deviation = 1

In represents the natural logarithm of a number. Natural logarithms are
based on the constant e (2.718).

The limitation of Black Scholes formula for determining implied volatility
is that it is solution of a tracing back process. which inculcates computational
hassles. Implied volatility as per Black Scholes formula involves an iterative
process that equates market determined call price to the known variables in the
formula.

Numerical methods are used for calculating the implied volatility in which
a dummy value is given initially and then different values are substituted in the
formula in order to equate the formula to the observed option price; so as to find
out the correct value of the implied volatility. Newton method has been used for
finding the correct value of implied volatility.

This limitation provoked the exploration of alternative approximations which
can be used as alternatives for the implied volatility.

Curtis and Carriker Approximation

Curtis and Carriker (1988) proposed a non-iterative method which
approximates implied volatility for ATM options. They employed the following
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equation to solve implied volatility :
a~[—2~] (C+S)
) s

Where @ = N' and this approximation is more correct for ATM options.

Bharadia et al. Approximation

Bharadia et al. (1996) developed a simplified volatility approximation as :
s (_ﬁi} (c-6-K) /[ S=(S- @_]]
2 2

e
Brenner & Subrabhmanyam Approximation
Brenner & Subrahmanyam (1988) proposed a following formula :

o (FEHE)

where C is call premium
S is current underlying asset price
ris time till expiration of option.

The accuracy of formula is based on the assumption that the price is
equal to discounted exercise price. In this approximation. an at-the-money
option is defined as onc whose futures price is equal to discounted strike price
§S=Xe"

Corrado and Miller Approximation

Corrado and Miller (1996) proposed the following formula which was
the extention of Brenner and Subrahmanyam method to approximate Near-The-

Money options :
E 2 | 2
1 {c_(s—.ln+ [C_swx] (s K)]

2n
a"‘.-.. e
Ur (S+K). 2 2 m J

The cquation uses discounted strike price as well as discounted futures
price i.e. K = Xe-rr and S = Se™

Keber and Schuster Approximation

Keber and Schuster (2003) gave the following formula for approximating
implied volatility :

e s
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-(SD_‘]‘-D). i (Sn _t—-ru)2 |
" _C_[_ 2 J+ [_2*::(2*(50-X)+(x0))__ T

Li's Approximation

(Sn = Xo ):
m

Li (2005) proposed the implied volatility approximation which was
an improvement on the Brenner and Subrahmanyam formula.

7_—_— 87 b

3a ]] I

Cos™ g e
Where Z = Cos[ [\/ﬁ and o S ¢

Chargoy-Corona and Ibarra Valdez Approximation

Chargoy-Corona and Ibarra Valdez (2006) approximated implied
volatility by using mathematical framework. guided by Galios Theory. The followin g
formula assumes that options are exactly at the money :

Analysis of Accuracy

The estimation efficiency of an approximation can be assessed by regressing
Black Scholes Implied Volatility on the implied volatility approximation. The
R-squared statistic measures how successful the fit is explaining the variation of
the data. R-square is the square of the correlation between the actual response
values and the approximations.

BSIV = + B, proxy + €

If the volatility approximation is accurate, then the value of B, and B,
would be 0 and 1 respectively. The sign and magnitude of the coefficients as well
as the adjusted R* are interpreted to judge the predictive power of different
models.

The following four alternative accuracy measures evaluate the accuracy of
alternative estimates relative to Black Scholes Implied Volatility estimates out of
which two measures are based on percentage errors and two on absolute error
values :
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Percentage errors can be calculated as follows :

Pt = [ (At - Bt) / Bt] * 100
And errors values can be calculated as follows :

Et = At - Bt
Where B is Black Scholes Implied Volatility and A is volatility approximation

and t denotes the point of time.
The measures of errors to be used in the study are as follows :
T

1
Mean Error : ME = ?— =1

l 2
Mean Squared Error : MSE = ;;Ef::"f

1
Mean Absolute Error : MAE = F):f Je|

7

1
Mean Percentage Error : RMSE = —- .

RESULTS AND ANALYSIS

Table 1 showcases the descriptive statistics for the Black Scholes Implied
Volatility and the other seven approximations for the implied volatility. It can be
observed that the mean value of all the approximations is bit higher than Black
Scholes Implied Volatility (BSIV). Only the KEBER IV has lower standard deviation
than BSIV.

Table 1
Descriptive Statistics for the Implied Volatility Approximations

BSIV | Curtis_ |Brenner_|Bhardia_[Chargoy_|Corrado_| LI Keber

v v v v v v 8%
Mean 0.24212] 0.29970 | 0.29438 | 0.29845 | 0.29820 | 0.26184 | 0.29164] 0.26309
Std. Er. 0.00086 | 0.00201 | 0.00192 | 0.00108 | 0.00200 | 0.00101 | 0.00188] 0.00101

Std. Dev. 0.10106 | 0.23505] 0.22525 | 0.12671 | 0.23428 | 0.10087 | 0.22051] 0.10091

Kurtosis 17.06304] 4.32070 | 4.16430 |14.42336] 4.39728 |20.78742] 4.11691]20.89488

Skewness 220718 | 1.37752 | 1.33068 | 1.94281 | 1.38973 | 2.86332 | 1.31067] 2.86742

Range 1.72100 | 2.66836 | 2.54356 | 2.92645 | 2.66701 | 1.70540 | 2.48842} 1.70017
Minimum 0.00000 | 0.00000 | 0.00000 [-1.09754 | 0.00000 | 0.01292 | 0.00000] 0.02413
Maximum 1.72100 | 2.66836 | 2.54356 | 1.82892 | 2.66701 | 1.71832 | 2.48842] 1.72430

Count 13702 13702 13702 13702 13702 10054 13702 10055
Confidence
Level 0.00169 | 0.00394 | 0.00377 | 0.00212 | 0.00392 | 0.00197 | 0.00369] 0.00197

(95.0%)
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The results for the regression equation :
BSIV =, + B proxy + €
arc given in Table 2. The regression equation is tested for each of the
approximation. For being an unbiased estimator of implied volatility, the coeflicients
of regression equation must be equal of 0 and 1 respectively. It can be observed
that the Adjusted R* and values of coefficients are satisfactory only in case of
CORRADO_IV and KEBER 1V,

Table 2
Regression Results for different Approximations with Complete Sample

Coefficient | Std.Er. t-statistic p-value | Adj. R? | Std.Er N
BSIV = B, + B, CURTIS IV

B, 0.18198 0.00124 147.07236 0.00000 | 0.21775 | 0.08938 | 13702

B, | 0.20066 000325 | 61.76441 | 0.00000
BSIV = B, + B, BRENNER IV
B, | 0.17884 |0.00125 | 143.39834 | 0.00000 | 0.22943 | 0.08871 | 13702

B, | 021493 000336 | 6387788 | 0.00000
BSIV = B, + B, BHARADIA IV

1
B, 0.09718 0.00175 5545071 0.00000 | 0.37074 | 0.08017 | 13702

B, | 048565 |0.00541 [ 89.85169 [ 0.00000
BSIV = B, + B, CHARGOY IV
B, | 018221 [0.00124 | 14732778 | 0.00000 | 0.21686 | 0.08943 [ 13702

.[_’;] 0.20091 0.00326 61.60264 0.00000
BSIV = B, + B, CORRADO IV
B, | 000410 J0.00016 | 2641758 | 000000 | 0.99690 | 0.00559 | 10054

B, | 099357 [0.00055 | 1796.72539 | 0.00000
BSIV = B, + B, LLIV
B, | 017740 J0.00125 | 141.62731 [ 000000 | 0.23441 | 0.08843 | 13702

B, | 022192 |000343 | 6477582 | 0.00000
BSIV = B, + B, KEBER IV
B, | 000321 |0.00013 [ 2420205 | 000000 | 0.99775 | 0.00476 | 10055

B: 0.99325 0.00047 | 2110.95343 0.00000
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It the second phase of regression-based analysis, the complete sample is
further divided on the basis of interest rate, time to expiry and differential returns.
Table 3 shows the results for the sample divided on the basis of interest rate.
MIBOR is considered as proxy for the risk free interest rate. The total sample is
further sub-divided into two sub samples. The first sub-sample considers the
regression analysis for those observations in which MIBOR rate is less than 6%
and the second sub-sample consists of those observations in which the MIBOR
rate is more than 6%.

It can be observed that the approximations given by Bharadia et al.
(BHARADIA-IV), Corrado (CORRADO-IV) and Keber (KEBER-1V) are satisfactory
in terms of performance.

Now the total sample is again sub-divided into 8 sub-samples which are
categorised on the basis of time to expiry i.e. 3. 5. 10, 15, 20, 25, 30 days to expiry
and more than 30 days. It is evident that the KEBER-IV has shown the persistent
performance along with the CORRADO-IV. The regression based performance for
the sub-samples is shown below in Table 4.

It can be observed that as the time to expiry has a horizon of one month,
the accuracy of the KEBER IV increases a lot. Similarly the performance of
CORRADO 1V also showcases the best fit. It can also be observed that the results
shown by BHARADIA 1V are also satisfactory.
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Table 4

Regression Results for Implied Volatility Approximations for the Sub-Samples on the

Basis of Time to Expiry

CURTIS_ | BREN- BHARA- | CHARG- | CORRA- LI_ KEBER
v NER_IV DIA IV oY_1Iv DO_1IV v v

r : less than 3 days
Adj. R? 0.7290 | 0.7248 0.9599 0.7291 0.9971 0.7234 | 0.9984
Std. Er. 0.1159 | 0.1168 0.0446 0.1159 0.0121 0.1171 0.0090
N 155 155 155 155 155 155 155

r : more than 3 days but less than 5 days
Adj. R? 0.4445 0.4496 0.9268 (.4445 0.9951] 0.4520 | 09977
Std. Er. 0.1080 | 0.1075 0.0392 0.1080 0.0102 | 0.1073 | 0.0069
N 596 596 596 596 596 596 596

r : more than 5 days but less than 10 days
Adj. R? 0.2458 | 0.2566 0.8865 , 02458 09942 | 0.2613 | 0.9976

Std. Er. 0.0920 | 0.0913 0.0357 0.0920 0.0081 | 0.0910 [ 0.0052
N 1441 1441 1441 1441 1441 1441 1441

r : more than 10 days but less than 15 days
Adj. R? 02047 | 0.2188 0.8927 0.2044 0.9969 | 0.2248 | 0.9988

Std. Er. 0.0798 | 0.0791 0.0293 0.0798 0.0050 | 0.0788 | 0.0031
N 2863 2863 2863 2863 2863 2863 2863

» : more than 15 days but less than 20 days

Adj. R? 0.2428 | 0.2628 0.9204 0.2427 0.9983 | 0.2707 | 0.9994
Std. Er. 0.0761 | 0.0750 0.0247 0.0761 0.0036 | 0.0746 | 0.0021

N 2440 2440 2440 2440 2440 2440 2440
r @ more than 20 days but less than 25 days

Adj. R? 0.3343 | 0.3621 0.9501 0.3329 09993 | 0.3754 | 0.9998

Std. Er. 0.0794 | 0.0777 0.0217 0.0795 0.0025 | 0.0769 | 0.0014

N 1489 1489 1489 1489 1489 1489 1489

~

: more than 25 days but less than 30 days
Adj. R? 04429 | 04720 0.9673 0.4408 0.9997 | 0.4872 | 0.9999

Std. Er. 0.0695 | 0.0677 0.0168 0.0696 0.0017 | 0.0667 | 0.0010
N 801 801 801 801 801 801 801

r : more than 30 days
Adj. R? 04162 | 04450 0.9643 04142 0.9999 | 0.4588 1.0000
Std. Er. 0.0586 | 0.0572 0.0145 0.0587 0.0008 | 0.0565 | 0.0004
N 269 269 269 269 269 269 269
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In this we have tried to distribute the sample into two categories on the
basis of difference between futures value discounted for risk free rate for the time
to expiry and strike price of the option being discounted with the same risk free
rate and time to expiry. The difference between the two represents whether the
options are In-The-Money or Out-Of-The money. The values are discounted in
order to include the present value of dividends given by the stocks comprising the
underlying asset i.e. the Nifty Index. Observing the results in Table 5. it can be
interpreted that the CORRADO_IV approximation and KEBER_IV approximation are
the best estimates for the implied volatility.

ANALYSIS OF ERRORS

The analysis of errors is important in order to find out the loss functions
and express the accuracy of the method for constructing fitted values in the model.
The results for the errors have been shown below for all the samples created on
the basis of different criteria.

The results for the mean errors are shown in the Table 6 below. It is the
most simple definition of loss function. It is the amount of physical error in an
approximation. It is a common measure to forecast error in time series analysis. The
results shown below clearly show that the errors related to CORRADO_IV AND
KEBER_IV have the least error. The errors further reduce when the time to expiry
is more than 25 days.
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The Table 7 showcases the error square of the simple errors between the
BSIV and the Volatility approximation. The error square provides a quadratic loss
function and also measures the uncertainty in forecasting. Mean Error square
places more emphasis on the magnitude of the error rather than the direction of the
error. It can be clearly observed that the mean square error for the CORRADO_IV
and KEBER IV presents the minimum loss functions in almost all the sub- samples.
But the approximation BHARADIA_IV also showcases some improvement in few
cases.

The Table 8 presents the results for the percentage errors. The percentage
error has positive value if the approximation is greater than the true value. So, it
can be said that the negative values of the percentage errors are more preferred one.
The results of percentage errors are also aligned with the previous results showing
the better performance of approximations CORRADO_IV and KEBER_IV in
determining the true value for BSIV.

Absolute error refers to just the magnitude of simple errors and not the
direction. Mean absolute errors for the approximations are shown in Table 9. It
clearly indicates that KEBER_IV approximation is one of the most appropriate proxy
for BSIV.

CONCLUSION

The results of the study clearly show that the approximations provided by
Corrado and Miller. and Keber and Schuster are the most appropriate proxy for the
implied volatility. Thus. these closed-form solutions for implied volatility can be
used as an input for the implied volatility in Black Scholes Option Pricing Model
rather than back solving the implied volatility. Thus, the use of the closed form
proxy would enhance the forecasting power of the Black Scholes Option Pricing
Model.
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